If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-880=0
a = 2; b = 4; c = -880;
Δ = b2-4ac
Δ = 42-4·2·(-880)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-84}{2*2}=\frac{-88}{4} =-22 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+84}{2*2}=\frac{80}{4} =20 $
| 3x-+6(44+55x)1/2+23+100-x4(34-2)= | | F(X)=4x+13 | | 31-4x=83 | | 8(z+2)-3(z-2)=2(z-4)+2(z-2) | | b+3/3-b/4=b-2/4 | | y/7=10y | | 340-5x=650-8x | | -3(n+1)=-3 | | 10+3u=2u | | 7h=2(2h-18) | | x^2+16x+816=0 | | 9+6d=5d | | c=3.5+50 | | 3x-5(x-3)=-7+3x+2 | | 4x-5=2/3+5 | | P3(6-f)-4=3f-4 | | 28-5=2+3x-3 | | 2/3m+9/4=10/3-53/18m | | 7x-(3x+14)=18 | | 14x-0.15=3.22 | | 50=(2p+3) | | w-11/6=45/6 | | 18+2n=-4 | | -2+v/3=-4 | | X^3-2*x^2-x+2=0 | | 3(3x-2)=2(2x+17) | | 43=34-3(x-1) | | 3u-13=20= | | -3/10x−30=60 | | 3(3x-2)=2(2x+17 | | p/8+1=2 | | 5x-9x+54=2x+36 |